Schedule
Lecture slides can be found here.
Lecture | Feb. 4 | overview and simple perceptron |
Lecture | Feb. 6 | delta rule |
Pset 0 optional | Feb. 11 | math review |
Lecture | Feb. 11 | gradient optimization |
Lecture | Feb. 13 | gradient learning |
Pset 1 due | Feb. 18 | simple perceptrons |
Lecture | Feb. 18 | multilayer perceptrons |
Lecture | Feb. 20 | backpropagation |
Pset 2 due | Feb. 25 | multilayer perceptrons |
Lecture | Feb. 25 | training |
Lecture | Feb. 27 | generalization |
Pset 3 due | Mar. 3 | black art of backprop |
Lecture | Mar. 3 | convolution and pooling |
Lecture | Mar. 5 | object recognition, image-to-image |
Lecture | Mar. 10 | biological vision |
Lecture | Mar. 12 | class canceled |
Spring break | ||
Lecture | Mar. 24 | biological vision |
Pset 4 due | Mar. 26 | LeNet |
Lecture | Mar. 26 | clustering and PCA as neural nets |
Lecture | Mar. 31 | autoencoders |
Midterm | Apr. 2 | midterm quiz |
Lecture | Apr. 7 | n-grams and word embeddings |
Pset 5 due | Apr. 9 | UNet |
Lecture | Apr. 9 | RNNs, multistability |
Lecture | Apr. 14 | RNNs, LSTMs, sequences |
Pset 6 due | Apr. 16 | unsupervised learning |
Lecture | Apr. 16 | seq2seq tasks |
Homework 7 due | Apr. 21 | project proposal |
Lecture | Apr. 21 | project meetings |
Lecture | Apr. 23 | project meetings |
Lecture | Apr. 28 | project meetings |
Homework 8 due | Apr. 30 | intermediate report |
Lecture | May 7 | final presentations |
Homework 9 due | May 12 | final report due |