Schedule
Lecture slides and Jupyter notebooks can be found here.
Lecture 1 | Jan. 29 | overview, simple perceptrons |
Lecture 2 | Jan. 31 | stochastic gradient descent |
Pset 0 optional | Feb. 2 | math review |
Lecture 3 | Feb. 5 | multilayer perceptrons |
Lecture 4 | Feb. 7 | convolution |
Pset 1 due | Feb. 9 | perceptrons |
Lecture 5 | Feb. 12 | convolutional nets |
Lecture 6 | Feb. 14 | visual object recognition |
Pset 2 due | Feb. 16 | MLPs and convolution |
Lecture 7 | Feb. 19 | generalization & regularization |
Exam | Feb. 21 | Exam 1 |
Lecture 8 | Feb. 26 | BatchNorm, transfer learning |
Lecture 9 | Feb. 28 | object detection |
Pset 3 due | Mar. 1 | object classification/detection |
Lecture 10 | Mar. 4 | deconvolution layers |
Lecture 11 | Mar. 6 | segmentation |
Pset 4 due | Mar. 8 | segmentation and denoising |
Break | ||
Lecture 12 | Mar. 18 | autoencoders and diffusion models |
Lecture 13 | Mar. 20 | language models and attention |
Pset 5 due | Mar. 22 | diffusion models |
Lecture 14 | Mar. 25 | review |
Exam | Mar. 27 | Exam 2 |
Lecture 15 | Apr. 1 | transformers |
Lecture 16 | Apr. 3 | GPT |
Pset 6 due | Apr. 5 | transformers |
Lecture 17 | Apr. 8 | in-context learning |
Lecture 18 | Apr. 10 | policy gradient |
Project | Apr. 12 | proposal due |
Lecture 19 | Apr. 15 | prompt engineering, RLHF |
Lecture 20 | Apr. 17 | project meetings |
Project | Apr. 19 | status report |
Lecture 21 | Apr. 22 | AI safety |
Lecture 22 | Apr. 24 | project meetings |
Final project | May 7 | (Dean's date) |
</div>