Schedule
Lecture slides and Jupyter notebooks can be found here.
| Lecture 1 | Jan. 27 | overview, simple perceptrons | 
| Lecture 2 | Jan. 29 | stochastic gradient descent | 
| Pset 0 | Jan. 31 | math review | 
| Lecture 3 | Feb. 3 | multilayer perceptrons | 
| Lecture 4 | Feb. 5 | convolution | 
| Pset 1 due | Feb. 7 | perceptrons | 
| Lecture 5 | Feb. 10 | convolutional nets | 
| Lecture 6 | Feb. 12 | visual object recognition | 
| Pset 2 due | Feb. 14 | MLPs and convolution | 
| Exam 1 | Feb. 17 | |
| Lecture 7 | Feb. 19 | generalization & regularization | 
| Lecture 8 | Feb. 24 | BatchNorm, transfer learning | 
| Lecture 9 | Feb. 26 | object detection | 
| Pset 3 due | Feb. 28 | convolutional nets | 
| Lecture 10 | Mar. 3 | deconvolution layers | 
| Lecture 11 | Mar. 5 | segmentation | 
| Pset 4 due | Mar. 7 | segmentation and denoising | 
| Break | ||
| Lecture 12 | Mar. 17 | autoencoders and diffusion models | 
| Lecture 13 | Mar. 19 | language models and attention | 
| Pset 5 due | Mar. 23 | diffusion models | 
| Lecture 14 | Mar. 24 | transformers | 
| Lecture 15 | Mar. 26 | pretraining/GPT | 
| Pset 6 due | Mar. 30 | transformers 1 | 
| Lecture 16 | Mar. 31 | deep RL | 
| Lecture 17 | Apr. 2 | posttraining/SFT/RLHF | 
| Exam 2 | Apr. 7 | Exam 2 | 
| Lecture 18 | Apr. 9 | AlphaGo | 
| Project | Apr. 11 | proposal v1 due | 
| Lecture 20 | Apr. 14 | project meetings | 
| Lecture 21 | Apr. 16 | agents and tool use | 
| Project | Apr. 18 | proposal v2 and status report | 
| Lecture 22 | Apr. 21 | project meetings | 
| Lecture 23 | Apr. 23 | AI safety | 
| Reading period | Apr. 30 | project oral presentations | 
| Final project | May 10, 8:30am | project papers due |