Lecture slides and Jupyter notebooks can be found here.

Lecture 1 Jan. 27 overview, simple perceptrons
Lecture 2 Jan. 29 stochastic gradient descent
Pset 0 Jan. 31 math review
Lecture 3 Feb. 3 multilayer perceptrons
Lecture 4 Feb. 5 convolution
Pset 1 due Feb. 7 perceptrons
Lecture 5 Feb. 10 convolutional nets
Lecture 6 Feb. 12 visual object recognition
Pset 2 due Feb. 14 MLPs and convolution
Exam 1 Feb. 17  
Lecture 7 Feb. 19 generalization & regularization
Lecture 8 Feb. 24 BatchNorm, transfer learning
Lecture 9 Feb. 26 object detection
Pset 3 due Feb. 28 convolutional nets
Lecture 10 Mar. 3 deconvolution layers
Lecture 11 Mar. 5 segmentation
Pset 4 due Mar. 7 segmentation and denoising
Break    
Lecture 12 Mar. 17 autoencoders and diffusion models
Lecture 13 Mar. 19 language models and attention
Pset 5 due Mar. 21 diffusion models
Lecture 14 Mar. 24 transformers
Lecture 15 Mar. 26 GPT
Pset 6 due Mar. 28 transformers 1
Lecture 16 Mar. 31 in-context learning
Lecture 17 Apr. 2 vision transformers
Pset 7 due Apr. 4 transformers 2
Exam 2 Apr. 7  
Lecture 18 Apr. 9 policy gradient
Project Apr. 11 proposal v1 due
Lecture 20 Apr. 14 prompt engineering, RLHF
Lecture 21 Apr. 16 project meetings
Project Apr. 18 proposal v2 and status report
Lecture 22 Apr. 21 AI safety
Lecture 23 Apr. 23 project meetings
Final project May 10, 8:30am